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Abstract:An antenna array on the transmit side provides the system with an extra spatial dimension that can be 

utilized for coding both in the spatial as well as the temporal domain. The recent development of such space 

time codes shows that there are ways of exploiting multiple transmit antennas while completely avoiding 

traditional beam-forming techniques need of accurate channel state information. In this project, we generate a 

framework for training based channel estimation under different channel and interference statistics. The 

minimum mean square error (MMSE) estimator for channel matrix estimation in Rician fading multi-antenna 

systems is analyzed, and exclusively the proposal of mean square error (MSE) minimizing training structures. 

By considering Kronecker-structured systems with a grouping of noise and interference and random training 

sequence length, we gather and simplify numerous earlier results in the framework. We simplify the 

circumstances for attaining the optimal training sequence structure and show when the spatial training power 
distribution can be explained unambiguously. We also prove that spatial correlation improves the estimation 

performance and establish how it determines the optimal training sequence length. The analytic results for 

Kronecker-structured systems are used to derive a heuristic training sequence under general unstructured 

statistics. The MMSE estimator of the squared Frobenius norm of the channel matrix is also derived and shown 

to provide far better gain estimates than other approaches. It is shown under which conditions training 

sequences that minimize the non-convex MSE can be derived explicitly or with low complexity. Numerical 

examples are used to evaluate the performance of the two estimators for different training classifications and 

system statistics. We also elucidate how the finest length of the training sequence often can be shorter than the 

number of transmit antennas. 
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I. Introduction 
In this paper, we consider training-based estimation ofinstantaneous CSI in multiple-input multiple-

output (MIMO)systems. Thus, the estimation is conditioned on the receivedsignal from a known training 

sequence, which potentially canbe adapted to the long-term statistics. By nature, the channel is 

stochastic, which motivates Bayesian estimation—that is, modeling of the current channel state as a 

realizationfrom a knownmulti-variate probability density function (PDF). There is also alarge amount of 

literature on estimation of deterministic MIMOchannels which are analytically tractable but in general 

provideless accurate channel estimates, as shown in [7], [8]. Herein,we concentrate on minimum mean square 

error (MMSE)estimation of the channel matrix and its squared Frobenius norm,given the first and second order 

system statistics. 
Training-based MMSE estimation of MIMO channel matrices has previously been considered for 

KroneckerstructuredRayleigh fading systems that are either noise-limited [9]–[11]or interference-limited [12]. 

In these papers, optimization ofthe training sequence was considered under various limitations 

on the long-term statistics, and analogous structures of theoptimal training sequence were derived. These results 

reducethe training optimization to a convex power allocation problemthat can be solved explicitly in some 

special cases. Whenmentioning previous work, it is worth noting that simplifiedchannel matrix estimators have 

been developed in [8] and [13]and claimed to be MMSE estimators, but we show herein thatthese estimators are 

in general restrictive. 

Although estimation of the channel matrix is important forreceive and transmit processing, knowledge 

of the squaredFrobenius norm of the channel matrix provides instantaneousgain information and can be 

exploited for rate adaptation andscheduling [17], [18]. The squared norm can be determinedindirectly from an 

estimated channel matrix, but as shown in[16] this approach gives poor estimation performance at mostsignal-
to-interference-and-noise ratios (SINRs). The MMSEestimator of the squared channel norm was introduced in 

[16]for Kronecker-structured Rayleigh fading channels, assumingthe same training structure as for channel 

matrix estimation.Herein, the estimator is proved and generalized to Rician fadingchannels, along with the 
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design of MSE minimizing trainingsequences. Although the MSE is non-convex, we show thatthe optimal 

training sequence can be determined with limitedcomplexity. 

 

II. System Model 
We consider flat and block-fading MIMO systems with atransmitter equipped with an array of transmit 

antennasand a receiver with an array of receive antennas. Thesymbol-sampled complex baseband equivalent of 

theflatfading channel when transmitting at channel use is modelledas 

     tntHxty     (1)  

A measure of the spatial channel correlation is the eigenvaluedistribution of the channel covariance 

matrix; weak correlationis represented by almost identical eigenvalues, while strongcorrelation means that a few 

eigenvalues dominate. Thus,in a highly correlated system, the channel is approximatelyconfined to a small 

eigensubspace, while all eigenvectors areequally important in an uncorrelated system. In urban cellularsystems, 
base stations are typically elevated and exposed tolittle near-field scattering. Thus, their antennas are strongly 

spatially correlated, while the non-line-of-sight mobile users areexposed to rich scattering and have weak 

antenna correlation ifthe antenna spacing is sufficiently large [19]. 

There are many reasons for estimating the channel matrixat the receiver. Instantaneous CSI can, for 

example, be used forreceive processing (improved interference suppression and simplified detection) and 

feedback (to employ beamforming andrate adaptation). In this section, we consider MMSE estimationof the 

channel matrix from the observation during training transmission. In general, the MMSE estimator of a vector 

from an observation is 

   


dhyhhfyhhMMSE //   (2)  

We stress that the general MMSE estimator in (6) is in fact linear(affine), but nonetheless it has 

repeatedly been referred to as thelinear MMSE (LMMSE) estimator [10]–[12] which is correctbut could lead to 

the incorrect conclusion that there may existbetter non-linear estimators. The MMSE estimator in (6) is alsothe 

maximum a posteriori (MAP) estimator 

Observe that the MSE depends on the training matrix and onthe covariance matrices of the channel and 

disturbance statistics,while it is unaffected by the mean values. Thus, the training matrix can potentially 

bedesigned to optimize the performance byadaptation to the second order statistics [9]–[12]. The intuitionbehind 

this training optimization is that more power should beallocated to estimate the channel in strong eigendirections 

(i.e.,large eigenvalues). Observe that training optimization is usefulin systems with dedicated training for each 

receiver, while multiuser systems with common training may require fixed or codebook-based training 

matrices(if users do not have the samechannel statistics). 
For general channel and disturbance statistics, the MSE minimizing training matrix will not have any 

special formthat can beexploited when solving (9). However, if the covariance matricesand are structured, the 

optimal may inherit this structure.Previous work in training optimization has showed that in Kronecker-

structured systems with either noise-limited [9]–[11] orinterference-limited [12] disturbance, the optimal 

training matrix has a certain structure based on the transmit-side channelcovariance and temporal disturbance 

covariance. Herein, thisresult is generalized by showing that the same optimal structureappears in systems with 

both noise and interference. Then, wewill show how the training matrix behaves asymptotically andunder which 

conditions there exist explicit solutions to (9). Finally, we analyze how the statistics and total training power 

determines thesmallest length of the training sequence necessaryto achieve the minimal MSE. To summarize the 

results of this section, we have showedthe structure of the MSE minimizing training matrix in Kronecker-

structured systems and analyzed the allocation of powerbetween the eigendirections. Based on these results, we 
proposea heuristic training matrix that can be applied under generalsystem conditions. Observe that even 

whenKronecker-structured approximations are used in the training sequence design,the general MMSE 

estimator in (6) should always be appliedwithout these approximations. 

 

III. Mmse Estimation Of Squared Channel Norms 
In many applications, it is of great interest to estimate thesquared Frobenius norm of the channel 

matrix. This normcorresponds directly to the SINR in space-time block coded(STBC) systems and has a large 

impact on the SINR in manyother types of systems [7], [8]. The channel norm can be estimated indirectly from 

anestimated channel matrix, for exampleusing the estimator in (6). This will however lead to suboptimal 
performance and gives poor estimates at low training power. Thus, we consider training-based MMSE 

estimation of in this section 

Analysis of the squared channel norm is considerably moreinvolved than for the channel matrix. The 

next theorem gives ageneral expression for the MMSE estimator and its MSE, andspecial expressions for 

Kronecker-structured systems. In orderto derive these expressions, we limit the analysis to training 
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matrices with the structure . It is our conjecture that the MSE minimizing training matrix has this form,3aswas 

proved in Theorem 1 for channel matrix estimation. Thistraining matrix structure is also of most 

practicalimportance,since the same training signalling will be used to estimate..low training power can be 
derived explicitly. Observe that theMSE  depends on the mean value of the channel, while theMSE for channel 

matrix estimation is independent of the mean.The limiting solutions are however similar in the sense that 

allpower is allocated in a single Eigen direction at low power andare spread in all spatial direction at high 

power. The definition of the strongest direction at low training power and theproportional power distribution at 

largepower are however different, which means that the MSE minimizing training matricesusually are different 

for matrix and squared norm estimation. 

In this section, the performance of the MMSE estimators andthe training sequence design will be 

illustrated numerically. TheMSE performance of the channel matrix estimator was thoroughly evaluated in [12] 

for interference-limited Kroneckerstructured systems. Thus, we consider the opposite setting ofa noise-limited 

non-Kronecker-structured system, and we willcompare the MMSE estimation performance with other recently 

proposed estimators. This section will also illustrate the advantage of direct MMSE estimation of the 
squaredchannel normover indirect calculation from an estimated channel matrix. Finally, we will illustrate how 

the smallest necessary length of thetraining sequence depends on the spatial correlation and available training 

power. 

 

OUTPUTS 

 
Fig 1The normalized MSEs of channel matrix estimation as a function of 

the total training power in a system with the Weichselberger model and the coupling matrix proposed 

 

. 
Fig 2The normalized MSEs of channel squared norm estimation as a function of the total training power in a 

system with uncorrelated receive antennasand a transmit antenna correlation of 2.4. 
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Fig 3The MMSE estimator with three differenttraining matrices is compared with the one-sided  

linear estimator 

 
Fig 4 The average optimal training sequence length (smallest length that minimizes the MSE) as a 

 function of the total training power 

 

IV. Conclusion  
The performance analysis given throughout this thesis is based on a large collection of new 

randommatrix theory results, which were presented. The key utility of theseresults is that, in contrast to many 

existing results in random matrix theory, they involve simplefinite expressions, and can be easily and efficiently 

evaluated. This is quite remarkable for manyof the results, such as those involving noncentral matrix-variate 

quadratic forms, given the hugecomplexity of the underlying matrix-variate distributions. The capacity were 
derived based on the new random determinant propertiesof complex noncentralWishart matrices and matrix-

variate quadratic formsThe properties for the Wishart case were derived using matrix-variate integrals and 

various determinant operations, as well as a new determinant representation for the classical 

hypergeometricfunction 1 F˜1( ·) of a single complex matrix argument,. The properties for thequadratic form 

case were derived by first using determinant operations to re-formulate the problems into ones involving only 

Wishart matrices, and then solving these with the help of the Wishartproperties. The ergodic capacity bounds 

were initially obtained using two classical inequalitiesfrom information theory due to Jensen and Minkowski. In 

order to evaluate the bounds in closedform however, using the results of, it was first necessary to re-formulate 

the requiredexpectations using am.g.f. approach. A similar method was also employed to obtain the 

capacityvariance results.The capacity results were derived based on the new expression for the joint 

unordereddistribution of two (jointly) correlated complex Wishart matrices, given. This wasobtained by 

marginalizing a joint eigenvalue distribution, using some determinant expansions.The performance results in 
Chapter 5 were derived based on the new expressions for the maximumeigenvalue distribution of complex 

central matrix-variate quadratic forms, given.The derivations in this case were particularly involved. 



A context for training - based approximation in randomly correlated rician mimo channels... 

DOI: 10.9790/2834-09652226                                www.iosrjournals.org                                                  26 | Page 

Specifically, these results were derivedby directly marginalizing the joint eigenvalue distribution given in, 

which involvea 0 F˜0(·) hypergeometric function of three matrix arguments; for which there is no 

equivalentdeterminant representation. Thus the marginalization was required to be carried out using thevery 
complicated zonal polynomial infinite series representation given. The key toolsused for handling this 

expression were advanced Vandermonde determinant operations, and theCauchy-Binet Theorem (this was 

employed for re-summing the infinite series at the end). 
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